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Review of Some Approximation Operators for
the Numerical Analysis of Spectral Methods

Yvon Maday

Abstract. This paper reviews some operators that are used in the nu-
merical analysis of spectral and spectral element methods. We motivate
the introduction of these different operators and sketch their approxima-
tion properties. Finally, we apply them to derive optimal error estimates
for spectral type approximations of the solution of elliptic partial differen-
tial equations.

§1. Introduction

Spectral type methods are high order discretizations that allow to compute
approximate solutions of partial differential equations. The recent version of
spectral approximations is based on the Galerkin approach where the varia-
tional statement (equivalent to the strong formulation of the PDE) is set on
discrete spaces of test and trial functions. For instance, let us consider the
problem: find u E X such that

a(u,v) = (f,v), Vv E X, (1)

where X is some Hilbert space, and a is a continuous bilinear form over X.
The general Galerkin approximation of this problem first requires the choice
of a family of discrete spaces XN C X, where N is a parameter that tends to
infinity and is related to the dimension of the discrete space XN. The discrete
problem is then stated as follows: find UN E XN such that

a(UN,VN) = (f, vN), VVN E XN. (2)

The basic general hypothesis that makes problem (1) well-posed is that a is
continuous and a-elliptic over X (i.e. 3 a > 0 such that a(u,u) Ž aIluII2x for
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310 Y. Maday

all u E X. These properties remain true over each XN (since XN C X); thus
(2) is also well-posed for each N. In addition, the solution UN satisfies

11U - UNJIX ! c inf FJu - VNjIX. (3)"VNEXN

The constant c that appears in (3) is the quotient of the continuity constant
of a with the ellipticipty constant a and is thus independent of XN.

Going back to spectral methods, the definition of XN involves polyno-
mials, and in the most simple cases (we shall see more general examples in
Section 5) we have XN = X A ]PN, where IPN represents the set of all poly-
nomials of (partial) degree less than or equal to N. Here N is the parameter
responsible for the convergence of the method. Due to (3), one ingredient in
the numerical analysis of the spectral method is the approximation properties
of the space of polynomials for given functions. The classical analysis of the
approximation properties of polynomials is done in terms of L'-norms. This
is not completely appropriate for our purpose since most often X is a Hilbert
space (generally L 2 or H 1 spaces), and the approximation properties have to
be measured with these norms. If a rate of convergence (with respect to N)
on the best fit infVNEXN JU - VN IIX is sought after, some regularity has to be
assumed over u. In Section 2, we give a survey of these best approximation
results depending on the regularity of the function we want to approximate.
We first analyze the L2-best fit and then the H1 -best fit. The main ingredient
in this analysis relies on the Legendre basis that is composed of the orthogo-
nal polynomials for the standard Lebesgue mesure over the interval (-1, +1).
These polynomials, denoted as (Ln)n, are defined by: degree(Ln) = n,

L,(1) 1, (4)
_" 26m,n

1L.(()Lm(()d(- 26n + "(5)

They satisfy some standard properties (actually valid for most families of
orthogonal polynomials)

n d p(1-(2)--- dnn =n(n + 1)Ln, (6)

that one can translate by saying that the Legendre polynomials are the eigen-
vectors of the (Sturm-Liouville) operator A. Since this is a possible basis set
for the implementation of problem (2), this gives the name of spectral to the
methods we shall consider hereafter, and that have been first analyzed in [10].
We refer also to [6] and [3] for more recent surveys on the numerical analysis
of these methods. In Section 3, we introduce the notion of numerical integra-
tion and the interpolation operator, two notions that are naturally quite close
and that allow to transform the "theoretical" approximation method into a
"applicable" one. In Section 4, motivated by the analysis of the Stokes prob-
lem, we introduce a new operator, that, in opposition to the previous ones, is
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uniformly stable (in N) both in the L2-norm and the Hi-norm and possess
optimal approximation properties. It has to be said, beforehand, that in the
precise analysis of these spectral (or polynomial) approximation, the Bern-
stein inequality runs counter to most standard tools that generally allow for
deriving approximation results for a new operator from an already analyzed
one. This Bernstein inequality tells about the equivalence of norms on the
finite dimensional linear space of polynomials. It is well known that, for any
function in H1 , the L 2 norm is smaller than the H1 -norm; of course this is
true in particular on polynomials:

VON E IP, 11NJI < IJONIIIH .
Since all norms are equivalent on PN, there exists a constant (obviously de-

pending on N) such that

VON G IPN, Ib¢NIIH1 < c(N)II1N11L2.

The behaviour of this constant is made precise by the Bernstein inequality

VON E PN, IbkNIIH1 • cN 2 IIONIIL2,

where c no longer depends on N. This estimate is optimal (in the sense that
there exists a sequence of polynomials such that the ratio of the H1 -norm over
the L 2-norm scales like O(N 2)), but is bad as regards the ratio of convergence
rate between the HW-best fit and the L 2-best fit that scales like O(N-1 ), as
we shall see below.

In the first three sections, the domains where the functions live will be
very simple, actually too simple to tackle real life problems; indeed these are
bricks equal to (_1, 1)d where d = 1, 2 or 3. The generalization of spectral
methods to more complex geometries is done by combining two key ingredi-
ents: the mapping of bricks onto curved bricks through regular mappings, and
domain decomposition. We give some hints about this generalization in §5.

§2. Hilbert Type Projection Operators

Let us start with the one-dimensional case. In L 2(-1, 1), we consider the set
FN(-1, 1) of all polynomials of degree < N. From the Weierstrass density
theorem, we know that any element ¢ in L2 (-1, 1) can be written as

"(= S qnL.((), (7)
n=O

where the convergence of the series holds in L 2. The coefficients on can be
derived from 0 thanks to the orthogonality of the Legendre basis as follows:

2n + 1 f L

2 j.
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Next, from (6) we derive that

-n 2n + 1 [1 AL,(,)

2 + (d)n(n+1),

noticing that A is symmetric, and assuming 0 regular enough, we derive that

2n+- A(O) (, n() d(.
2 .- n(n+1)

If we iterate this argument p times, we obtain

2n + 1 AP ()()n(C) pL,

so that, the following simple relation holds between the Legendre coefficients
of 0 and of AP(0):

1 n.

nP(n + 1)p -()

Next, let rrN denote the L2(-1, 1)-projection over PN(-1, 1). Going back to
(6), we deduce from (7) and (5) that

N

7rN(¢) = Z 4 Ln(.)' (8)
n=O

so that

00 00

7rN(¢) = E "L (C) = nn 1 Ap(¢)L(:)
n=N+! n=N+l n(n + i)P

and, by Parseval

rN( )IIL2(-I'I) = I 1 p ]2[+)]2 2n + 1

n=N+ +

14 O 2
N ]4p E ]22n +1

n=N+l

rIli n "~ 2  2 1 4
- n 2n+l I

We have thus proven that, for any 0 in the domain D[AP] of AP,

11€ - WN(O)IlL2(-j1,) _• c(p)N-2pIIAP(O)IIL 2(-1,1).

It is easy to check that H 2p(-1, 1) C D[AP]; hence the following theorem (due
to Canuto and Quarteroni [7]), proven here for even values of r, holds for any
r thanks to an argument of interpolation between Sobolev spaces:
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Theorem 1. For any real number r > 0, there exists a constant c > 0,
depending only on r such that, for any function 0 E Hr(-1, 1),

I11 - 7rN(O)[JL2(-1,1) _< cN-rJIOIHrc(-.,l). (9)

Let us denote now by IIN the L2 ((-1, 1)d) orthogonal projection operator
over the set IPN((-1, 1)d) of all polynomials of degree < N with respect
to each variable. By Fubini's theorem, IIN = 7rN ® 7rN, in 2D and 1 1 N
7rN 0 oWN ® olrN, in 3D. By tensorizing (9) we derive

Theorem 2. For any real number r > 0, there exists a constant c > 0,
depending only on r such that, for any function 0 E Hr((-1, 1)d),

11 - <),1 c N - IIr I IH r ( ( --. ,1)d ).

We are now in a position to tackle the approximation in the H 1 norms.
First, we consider a function ¢ E Hi(-1, 1)nHr(-1, 1), with r > 1. It is quite

immediate to check that the polynomial ON(() = f wýl g ()d• belongs
to PN(-l, 1), vanishes at C = -1, and satisfies

ONg(1)= 1 7rN-l-o(f)d 1 drN-1)

=P1 dL(6)L0()d LO (6)d<

= O(1) - 0(-1) = 0,

and hence is an element of PN(--1, 1) n Hi(-1, 1). Finally it is a good ap-
proximation of €, since from Poincarr6's inequality and Theorem 1,

110 - ONII(-1,1) W CI do deNI

< dC dl-

<c [•- 7r -1(-)I-1,1) -- cNI-r[ICHH(-1,1).

Let us introduce now the orthogonal projection operator 7r', from Hi1(-1, 1)
onto FPN(--1, 1) n HJ(-1, 1), we can state the following result (due to Maday
and Quarteroni [15]):

Theorem 3. For any real number r > 1 and any real number 0 < s < 1
there exists a constant c > 0, depending only on r and s such that for any
function 0 E H/0(-1, 1) nl Hr(_-1, 1),

110 1,r
0N(4)IIHH.(-1,1) -< cY•-s IIOIIH-(-1,1). (10)

Proof: The theorem has been obtained for s = 1. For s = 0 it is obtained
through a standard Aubin-Nitsche duality argument, and then for any s by
interpolation between Sobolev spaces. El
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Remark. At this point it has to be said that the L 2 projection operator 7rN

does not have optimal approximation properties in the H'-norm, the only
(non-improvable) property that can be obtained is

I110- _<~l(- ,): cN 22- l~ l,_ ,)

We refer to [3] for details and counter-examples.

Remark. It may also be interesting to note that, despite their definition, the
previous operators have stability properties in various norms. First for the
L2-operator, we have

l17rN~llHW(-1,1) _ý cN½12ll]lHi(-1,1),

which is related to what we have indicated in the previous remark, but also

IlI1N" ¢ll/2(-x,1) _< cN11I0lILý(-1,1),

which is rather suprising since, from this (non-uniform) stability property, the
HJ-projection operator can be extended to (irregular) functions of L 2!!

Again by tensorization of the results of the one dimensional Theorem 3,
we exhibit a polynomial that approximates regular functions in H1((- 1, 1)d)
well, from which we derive approximation properties on the multidimensional
projection operator Hl•O from HJ((-1, 1)d) over PN((-1, ))d) n H ((-1, 1)d)

both in Hl-norm and in L2-norm (derived by duality):

Theorem 4. For any real number r > 1 and any real number 0 < s < 1
there exists a constant c > 0, depending only on r and s such that, for any
function ¢ E H0((-1, 1)d) n Hr((-1, 1 )d),

110 - II•°(€ lls,((-1,1)d) < cNA -- lIOilHr((-1,1)d). (11)

These results can be completed in order to derive a whole scale of ap-
proximation projectors in higher order norms. These are required, e.g. for
the analysis of the approximation of fourth-order problems. The general re-
sult, concerning the orthogonal projection operator ll" from HP((-1, 1)dN
HJ((-1, 1)d onto PN((-1, I)d) n HU((-1, 1)d) is given in the following theo-
rem (due to Maday [11] in 1D, see also [3] for the extension to 2 and 3D):

Theorem 5. For any real number 0 < a < p and any 0 < s < p <_ r, there
exists a constant c > 0, depending only on r, s, p, a such that, for any function

(E H ((--1, 1) d ) n Hr((_-1, 1)d),

I11 - II•},•0(0)1lu•((-1,1)d) <5 cN'-'ll~llH-((-1,)1)-
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Remark. A final remark on these operators is that improved-approximation
results in negative norms are also true, and can be obtained in a classical way,
by further refering to the Aubin-Nitsche duality argument. Hence, Theorem
5 is also valid for negative values of s.

These results allow us to prove that the approximation of most elliptic
variational problems by spectral methods is optimal. As an example, let us
consider the (non-constant) Laplace problem on a cube Q = (-1 1)3: given

a 3 x 3 matrix, symmetric and uniformly positive definite, we consider the
problem of finding u E H0i (Q) such that

-div[Agrad]u = f. (12)

The approximation then consists in finding an element UN in XN =- gPN(Q) n
H02(Q) such that

J AVUNVVN = fvN, VVN E XN. (13)

Assuming that u C Hr(fl), we deduce from (3) and (11) that

1I1 - UNIHI (Q) • cNl-'IIuIIHi(Q).

As hinted in the introduction, this problem is numerically intractable;
indeed the implementation of (13) requires the computation of the two in-
tegrals appearing on the left- and the right-hand sides of this equation. The
exact computation is most often impossible, and certainly numerically not fast
enough. The use of numerical integration rules is the cure to this problem,

but in order to combine efficiency and precision, following Gottlieb [9] and
Mercier [17], we refer to the use of Gauss type quadrature rule. Indeed, they
are well known to be well suited for the integration of polynomials.

§3. Interpolation Operators

Between the different numerical quadrature rules over (-1, 1), well suited for
polynomial integration, we shall quote here the Legendre-Gauss and Legendre-

Gauss-Lobatto ones. We refer to [2] for more details. For the sake of com-
pleteness, we recall the definition of these formulae:

Theorem 6. (Gauss formula) For any real number n, there exists a unique
set of points -1 < (n < (2 < ... < ( < 1, and a unique set of positive
weights w]ý such that for any polynomial 0 E IP 2 -1 (-1, 1), the following
equality holds:

n -

1i~:l
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Theorem 7. (Gauss-Lobatto formula) For any real number n, there exists
a unique set of points -1 = • < * < ... < • = 1, and a unique set
of positive weights p!' such that for any polynomial 0 E P 2 .- l(-1, 1), the
following equality holds:

i=0

From now on, we shall assume that the degree of the polynomials for the
approximation is fixed to be N, and we shall use N + 1 points either of Gauss
or Gauss-Lobatto type. For the sake of simplicity, these points will be denoted
with no superscript, i.e. in all of what follows, we set (i =_ (N+1 and ýj = E .
We recall that these points are the roots (resp. the extrema) of the Legendre
polynomials; more precisely, we have

Vi, Lg+1((i) =O, (resp. (1 - ?)',()=0.

After tensorization, these one dimensional quadrature rules easily provide
quadrature rules on the square and on the cube defined as follows (e.g. in
2D for the Gauss Lobatto formula):

N N

GL i=0 j=0

The problem that is actually implemented is then the following: find an ele-
ment UN in XN such that

Z AVUNVVN = EfVN, VVN E XN. (14)

GL GL
Even in the case where A is constant, at least in more than one dimension,
the left-hand side is not exactly computed. The problem is no longer of the
form (1), and the abstract theory has to be generalized in order to handle this
problem as well.

Here is not the place to detail this generalization (see [3], where the
complete analysis is performed) but it is natural that the a-ellipticity of the
bilinear form on the left-hand side of (14) is again one of the key ingredients
and has to be satisfied. This follows from the property, proven in [7]

VON C PN(--1, 1), N ¢ 0v-> ¢N(()d(•

GL
From this property it can be easily derived that the solution UN to (14) exists
and is unique.

The approximation properties of the polynomial interpolation operator
over the Gauss-Lobatto nodes is of great importance in the error bounds. Let

iN denote this operator in one dimension:

V¢ E C°([-1, 1]), iN(O) E gPN(-1, 1) and Vi, 0 < i < N, iN(O)(ýi) = 0(6)

and let us tensorize it in order to get a two (resp. a three) dimensional operator

IN =_ i4 ® i,7 (resp. IN -- , ® i,i ® in). The properties of this operator have
been established in [12] and [2], and read as follows:
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Theorem 8. For any real numbers s and r satisfying r > (d + s)/2 and
0 < s < 1, there exists a positive constant c depending only on r such that
for any 0 in H ((-1, 1)d) the following estimate holds

I11 - IN(0)IIH-((-1,1)d) •- cNS-rII¢IIHr((-1,1)d). (15)

It has to be noticed that this operator requires more regularity than the
L2 projection operator, but it is optimal both in the L2 and the H 1 norms.
It has also to be recalled that in the classical approximation properties in the
L' norm, the Lebesgue constant appears as a pollution of the approximation
properties of the interpolation operator as regards the optimality provided
by the corresponding best fit. This is not the case in the L2-norm. In this
direction what we have more precisely is that, for any function 4 in Hl(-1, 1),

I[iN0)IL2(-1,1) •_ C([I IL (-1,1) + 111 do1L2(,)

and for any function 4 in Hi(-1, 1),

JHiN0JIIH1(-1,I) !_ C11011HI(-1,1).

Another nice property of this operator, that has some importance for nonlinear
PDE's, is the following result: for any polynomial oM E PM(-1, 1),

M
IliNOMIIL2(-1,1) < c(1 + -)I10MtIL2c(-1,1).

Here no duality argument allows us to derive from the previous theorem
improved approximation properties in negative norms. It is an open problem
to derive such results.

The numerical analysis of problem (13) then continues by noticing that

E fVN = E -TN(f)VN,

GL GL

which is one of the ingredients that allows to prove (see [2]):

Theorem 9. Assume that the solution u of (12) belongs to Hr(Q), that the
coefficients in A are very regular, and that the data f belongs to HP(Q). Then
the solution UN to (13) satisfies

11U - UNIIH (Q) _< c(NlI-"I1UIH_(Q) + N-PIJfIIH,(n)).

The case where A is not so regular can be handled with the same type
of arguments, but more technical tools are involved; we refer to [16] for more
details. It is interesting also to note at this level that, taking into account non-
homogeneous Dirichlet boundary condition is very simple thanks to the nice
properties of the interpolation operator. Indeed, assume that the solution to
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our problem (12) has to satisfy (instead of zero Dirichlet boundary conditions)
the following condition: ulap = g where g is a given function on the boundary
of Q. Then, naturally, for the approximation, we look for a polynomial UN in
PN(Q) such that (12) holds, and in addition

UNlao = -ENg,

where "N is the operator of interpolation defined edge by edge (respectively
face by face) from iN (resp. from IN). Since the interpolation operator is
optimal both in L2 and in H', it results by an argument of interpolation
between Sobolev spaces that it is also optimal with respect to the Hn/2(OQ)-
norm. This fractional order norm is the natural one for the treatment of the
boundary terms. It has also to be stressed that neither the L2-projection
operator nor the H'-projection operator allow such an optimality nor such
ease in the implementation.

Next, associated with the Gauss quadrature formula, we can also define an
interpolation operator, denoted as iN and defined as follows: VO E C°([-1, 1]),

jN(¢) E IPN+1(-1, 1) and Vi, 1 < i < N + 1, jN(¢)((i) = €((i)"

The L2 (-1, 1)-approximation properties of this second interpolation operator
are also optimal. Unfortunately, in the H 1-norm it is not optimal; for instance

it is readily checked that jN(LN+I - LN-1) = LN-1. Recalling that
2n+l1

Vn, L.+l - L._1 - 2nn + -1 -_,2)L'n,

n(n +1)

it is then easily proven that IILN+1 -- LN-11H1(-1,1) scales like O(N 1 / 2) while
IILN_1IIH1(_1,1) scales like O(N); jN is thus not stable in the H' norm.

For similar reasons, the interpolation operator iN on the Gauss-Lobatto
nodes does not have optimal approximation properties in the H2(-1, 1)-norm.
In order to achieve such a property, we have to refer to generalized Gauss-
Lobatto rules as is done e.g.in [1].

§4. An "Ideal" Operator

At this stage there is no operator from L 2 (-1, 1) onto the set of polynomials
that has optimal approximation properties and is stable both in the L2 and
the H' norm. Such an operator is useful, as will be explained below, in the
analysis of the Stokes problem. In order to define this "ideal" operator, we

fix a positive real number A and a cut-off function X of class C' on R+ such
that X is equal to 1 on [0, 1 - A], decreases from 1 to 0 on [1 - A, 1] and
vanishes on [1, co]. Next, with each positive integer N, we associate as in [18]

an operator 7rXN with values in PN(--1, 1) n HJ(-1, 1) as follows: since each

function 0 in H01(-1, 1) can be written as 0 = - ( - ga-), we set

7NO = En= 1 X( N) "(Ln+l - Ln-1). Note that the sum above is finite since

X has a bounded support. It is proven in [4] that this operator is stable both
in the HJ and the L2 norms:
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Theorem 10. There exists a constant c, independent of N such that for any
function 0 E H•(-1,1),

IIT 'X C L 2 -1,} --• C jj¢ IL ý(- 1,1), jj~r' 1[,H 1(- 1,1) 5 [1€1 IH 1(- l ,1)- (16 )

It is an easy matter to verify that the operator 7r' leaves invariant all
polynomials of PFN(--1, 1) n H01(-1, 1). The previous stability and the best
fit estimates (9), (10) imply

Theorem 11. For any positive real number r and any real number 0 < s < r,
there exists a constant c > 0, depending only on r and s such that, for any
function 0 E Ho(-1, 1) if r < 1 and any function q E H1(-1, 1) n Hr(-1, 1)
ifr > 1,

[[-7'0r¢IHý(_l,l) :5 cNS-rl¢H•-,.

As an application of the previous result, we can consider the problem
of finding compatible spaces for the approximation of the Stokes equation.
Under variational formulation, this problem consists in finding a pair (u, p) in
(HI1(Q))d x L02(n) of velocity and pressure such that

J VuVv - i pdivv = j fv, Vv c (HJ%(2))d, (17)

nqdivu = 0, Vq c L2(Q), (18)

where L 2(Q) is the set of L2 functions with zero average. It is well understood
now that the spectral approximation of the Stokes problem based on polyno-
mials of the same degree leads to instabilities. This is due to the fact that
the pressure space is too rich in comparison to the velocity space. Indeed,
there exist polynomials qN in IPN((-1, 1)d) such that fn qNdivvN = 0 for all

VN in (PN((-1, 1)d)fnH01((-1, 1)d))d (e.g. qN(x,y,z) = LN(x)LN(y)LN(z)).
Of course such polynomials (called spurious modes) prevent the discrete prob-
lem from being well-posed since it prevents the definition of a unique pres-
sure. The cure is well known, and consists in depleting the pressure space
for a given velocity space. In [14] the pair (IN((-1, 1)d) n Hd((-1, i)d))d X

PN-2((-1, 1)d)fL2((_l, 1)d) has been proposed, and gets rid of the spurious
modes. It is known as the PN x IPN_ 2-method. Actually, what is looked for
is a pair XN x MN approximating (H01((-1, 1)d))d x L2((-1, 1)d) well and
such that not only VqN E MN, 3VN, fn pdivvN # 0, but more precisely, in
order to get a stable method, we require that

VqN~~~ ~ E N V, opiVN [,1VN IIH ( (--1,1)1ý) lqN I[L2( (--1,1)d) ,

where /3 is known as the constant of the inf-sup condition. The behaviour
of 03 for the IPN X PN_ 2-method scales as O(N-Y) (see [2]), and it has
been a long standing question whether there is a uniformly stable spectral
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approximation of the Stokes problem. It has to be said that the nonuniform
behaviour of the inf-sup constant pollutes the accuracy of the pressure, but
also pollutes the convergence properties of some classical solvers for the Stokes

problem (see [13]). The "ideal" operator introduced above allows us to prove
that a compatible choice is the FPN X PAN-method that proposes, for the

same choice of velocity space, PAN((-1, 1)d)flL2((-1, 1)d) to be the pressure

space. The following result is due to Bernardi and Maday [4]:

Theorem 12. For any real number A, 0 < A < 1, there exists a positive

constant 03 independent of N such that, for any integer N > 2/(1 - A) and
any qN E ]PAN((-l, 1)d) n L2((-I, 1)d),

sup fn pdiVVN 0 
3

qNIIL2((_X,1)d)
VNE(PN ((--1,1)d)nHI((--1,1)d))d JjVN[[HI((-1,1)d)

Proof: Let qN be any polynomial in PAN((--1, 1)d) n L02((-1, 1)d). It is a
standard matter (see e.g. Corollary 2.4 in [8]) that, to qN, can be associated
a (continuous) element v in [Hi1((-1, l)d)]d such that

divv = qN and [IVIIHg((_11)l) _• c]qNlIL2((_I,1))).

The problem is that v is not a polynomial. We define VN = 7rN ® 7rNV in 2D
and VN = r ® 7r' ® 7r' v in 3D for which we derive thanks to (13) that

[[VN11Hý((-1,j)d) _ c[[qN11Lý((-_,j )d

Due to the fact that vrX leaves invariant all polynomials of PAN(-1, 1) n
Hi(-1, 1), we deduce that fo qNdiv(vN - V) = 0, and thus

J1qldivvN = qNdivv = q,

which concludes the proof with f3 = E.

§5. Extension to Domain Decompositions

In the spectral method history, the need to tackle more general domains was

recognized early. In this direction, Patera has proposed in [19] the spectral
element method that combines the accuracy of the spectral method with the
flexibility of the domain decomposition methods. The idea is to introduce a
partition of the domain 9 as a union of nonoverlapping subdomains:

n K --ik Qlk n 1 .

In addition, we assume that each subdomain Qk is associated with a regular
one-to-one mapping y-k that maps the brick (-1, 1)d onto (k and, for the
time being at least, we make the following assumptions:
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Assumption 1.

an entire common face (in 3D), or
-k -1 I an entire common edge, or

a common vertex, or

Assumption 2. The two parametrizations of the previous intersection

flk n _, resulting from Yk and PF, coincide.

This allows us to define the discrete space

XN = {VN c HA I), VNjIk E .F" e PN((-1, 1)d)}

and the discrete associated problem (2) (or its implementable version involving
the Gauss-Lobatto quadrature rule over each £lk as in (13)).

The main ingredient that allows us to prove that the previous scheme is
again optimal lies in the definition of a element in XN that approximates well
a given regular function u. This is done easily by considering the element VN,
defined locally over each subdomain as VNIJk o ."k = IN[Ulk o .yk]. It results
from Assumptions 1 and 2 that VN is actually continuous and vanishes over
O•Q. From (15) it is an optimal approximation of u in the sense that

IIU - VNIIHI(Q) •- cNlII-"lUIHr(0). (19)

The best fit in H'(Q) is certainly as good as the proposed VN, and the spectral
element method can be proven to be an optimal approximation. We have only
sketched the numerical analysis of this approximation, since the main purpose
of this paper is to discuss projection operators. It is fundamental to have used
here the interpolation operator to construct VN, since it provides a globally
continuous function. As an example, the use of the H 1-projection operator
would not have given rise to a continuous function since, for a given function

over the brick (-1, 1)d, the value of 11110(o) over any face depends not only
on the value of ¢ on the given face, but depends on ¢ inside the whole domain.

We want to end this section by giving some hints on the "mortar spectral
element method" due to Bernardi, Maday and Patera, that allows to relax
assumptions 1 and 2 (and even, more generally, allows to combine spectral
methods on some subdomains with different finite element methods on others
see [5]). Due to lack of space, but also in order to better understand the
main feature of the projection operators that is at the basis of the method,
we shall consider a simple two dimensional domain Q = (-1,2) x (-1, 1)
decomposed into 3 subdomains Q1 = (-1, 1) x (-1, 1), Q22 = (1, 2) x (-1,0)
and Q3 = (1, 2) x (0, 1). This decomposition violates assumption 1 since the

intersection W fl 2 is not a common whole edge. We want nevertheless to
propose a discrete method that will allow to provide an optimal approximation
of the solution u of (12) (with A =Id for the sake of simplicity). The discrete
space X7v that we propose is imbedded in

YN = {VN E L 2
(Q),vNIlk E IPN,VNIOQ = O, VNI2 =VNQI3 over 2n }
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but it is readily checked that imposing continuity at the level of the inter-
face x = 1 will rigidify the approximation and, in the general case, will spoil
the accuracy of the method. In order to relax this continuity condition (re-
mind that it is inherited from the requirement that X* C X), we resort to
nonconforming approximations. We shall replace the continuity condition by
requiring that, over the interface x = 1, we impose for each element in YN

[v-(1,y)--v+(1,y)]ON(y)dy=O, VON E PN-2(-1, 1), (20)

where v- virl and

v += fVjn2 for (x,y) E 2 ,
.VlrQ3 for (x, y) C Q3 .

Since v-(1, y) has to vanish for y = ±1 (due to the homogeneous boundary
conditions), it is entirely defined by the N - 1 conditions in (20); in particular
choosing 0 in ]PN(-1, 1) would be much too stringent. The elements of YN

that satisfy (20) constitute the space X* of approximation. The method is
then: find ug E Xg such that

K K
aN(U*N,VN)- j• VU7*NVVN = j fVN, VVN E XN. (21)

Since X, is no longer a subspace of X, the ellipticity of the bilinear form of
this problem is not straightforward. Nevertheless, it is true (and here it is
particularly obvious since t9Qk n 0Q54 0). This argument allows us to check
that there exists a unique solution uý to (21). In order to derive the error
bound we proceed as follows: for any WN E XN,

aIu*1 WNII, -<aN(u -WN,U* -WN)

K K

- : fnJk f(Uý - WN) - Ezj2 VWNV(UN* - WN)
k=1 k=1

K K

- Z -AU(U* - WN) - I ~ VWNV(U*N - WN)

K K

E VUV(UN* - WN) - E VWNV(UN* - WN)

- L1  ±[(u* - WN) - (U* -N)+],

so that, from (20) we derive that for any 7 E PN-2(-1, 1)
K

•IUI -NII, - -J V(u - WN)V(U*N - WN)

k=1k

-- 1=I[1" -- V][(U*N -- WN)- -- (U1*N -- WN)+],
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It follows from the previous inequality that

f . = [ t u -[ 0 ] [ - v + ] d y

aIj•-•WNI, < 5cjU - wNII* + sup x- ..- N.. N (22)
VNEXr uIVNII*

By choosing V equal to gN20-A, it results that

supfx=1[ - 0][v- - v+]dy

VNEý IIVN 11*

It remains to choose a good approximation WN of u in X7v to take into account
the first term on the right hand side of (22). This is done by noticing that, for
any 4 E HJ(-1, 1), the element ON of IPN(--1, 1) n HJ(-1, 1) that satisfies

j[N -- q]bN(y)dy =0, VON E PN-2(-1, 1),

is nothing other than ON = OrN°(0). Indeed, we remark that, for any XN E
IPN(-1, 1) nl H01(-1, 1), then XN4 E IPN-2(-1, 1), thus

f_1 /1
[ON - ¢b]OX'(y)dy = - [N - 1]'X'N(y)dy.

The choice of a good element WN is done as follows. We first set ZZJNIk =

IN(UNIok) that is an element of YN. We then set WNIok = wNIok for k = 2,3,

and build WNlIn by adding to 77K the correction 7rN (WN -- _)(") (1-x)LV(x)N N, (wN- fN/Y 2LýV(1)

so that it satisfies (20). Due to the optimal approximation properties of the
operator 7r° both in the L2 and in the H'-norms, we deduce that the mortar
spectral approximation (21) is optimal in the sense that (19) still holds.
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